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Magnesium is one of the most abundant metal ions in cellular recent advances in solid-state NMR instrumentation, it is possible
organisms. Like other alkali and alkaline metal ions {NK™, to extend solid-state NMR to biologically important lonmetal
and C&"), Mg?* is involved in a wide variety of physiochemical nuclei such a8’Zn1!* We believe that solid-stat&Mg NMR will
activities necessary to sustain lfeor instance, magnesium  also be useful for studying magnesium chemistry in a biological
serves as a cofactor responsible for the biochemical transfer ofcontext. In this Communication, we report preliminary solid-state
phosphate-related enzymeddg? also occurs as an integral  2Mg NMR results for four-inner sphere Mghbinding complexes.

component in a number of non-phosphate-transferring proteins, The Mg compounds studied in this work are Mg(L,, L
including carbohydrate isomeragesd DNA-activating topoi- = methylmalonateX), formate @), acetateg), and orotate4).1
somerase$ A recent study of ribozymes has suggested that the These compounds can be treated as models for the inner-sphere
Mg?" ion may play a key functional role in regulating the catalysis Mg+ binding sites often found in various biological systems.
of this class of metalloenzymé<£rystallographic studies of yeast | compoundi, the Mg* ion is coordinated with six oxygen
tRNAP™ have suggested that binding of the metal ion may play atoms in a slightly distorted octahedral geometry. Four of the six
a role in stabilizing the tertiary conformation of the RNA  oxygen ligands are water molecules, and the other two are from
molecule? Mg?" has also been found to maintain the carbamate the g-methylmalonate ligan# Such a M§* coordination ge-
formation Wh|Ch aCtivateS the Cata|ytiC aCtiVitieS Of ribulose'l,5' Ometry mimics those of inner-sphere b|nd|ng sites where two of
bisphosphate carboxylase/oxygenase (‘rubisco”) in carboxylation the six water molecules of the [MggB)s]2* ion are replaced by
and oxygenation in green plarts. . . anionic ligands. The binding of Mg to the a-methylmalonate

Efforts to decipher the magnesium chemistry at a biomolecular |igand in 1 serves as a good model for the Mg binding to
level have been hampered by the lack of suitable spectroscopicg_carhoxylapartatic acid (Asa), which is found in ribosomal
techniques for Mg due to its closed electronic structure. proteinsi#15 The 2Mg nuclear quadrupole coupling constant
Application of°Mg NMR has been very limited because of the
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Figure 1. Experimental and simulatédMg MAS NMR spectra of (A)
magnesium methylmalonate tetrahydratp(874 transients, 10 s recycle
time, 10 kHz spinning rate), (B) magnesium formate dihydra}¢3039
transients 5 s recycle time, 9.3 kHz spinning rate), and (C) tetraaqua-
(orotatoN,O)magnesium 2.5 hydratd)((715 transients, 10 s recycle time,
8.2 kHz spinning rate). Solid-stat&Mg NMR spectra were obtained on
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Figure 2. Two-dimensional (2D) MQMAS spectrum of magnesium
formate dihydrate3). The pulse sequence with a z-fikéwas used in
obtaining?®Mg 3QMAS spectra. The optimized excitation and conversion
pulse width was 7.5 and 28s, respectively. The selectivéMg 90°
pulse for the central transition was 88. The sample spinning frequency
was 9 kHz. A total of 1200 transients were collected for each of the 64
t; increments with a recycle delay of 2 s. The 2D data was zero-filled to
a size of 1024x 128 prior to 2D shear Fourier transformation (FT).

quantum MAS (MQMASY® technique forP5Mg. Figure 2 shows
the two-dimensional (2D¥Mg MQMAS spectrum oP, together
with the two corresponding projections. As seen in Figure 2, two

a Bruker Avance-500 spectrometer operating at 500.13 and 30.62 MHz Clearly resolved isotropic peaks are observed in the isotropic axis

for 'H and Mg nuclei, respectively. AlP°Mg chemical shifts were
referencedd 3 M MgSQ, (aqueous) by setting the signal of solid MgO

of the 2D sheared MQMAS spectrum. Compared with%idg
MAS spectrum, the resolution of the isotropic projection of the

at 26 ppm. The inset illustrates the general structure of the Mg compoundsMQMAS spectrum is increased approximately by a factor of 20.

studied in this work.

(NQCC) for such a Mg site ig = 1.95 MHz withy = 0.80. The
isotropic Mg chemical shift isdis, = 12 ppm. The crystal
structure of2 indicates the presence of two distinct Mg sités.
While one Mg site is coordinated with six formate groups, the
other Mg site is bound to four water molecules and two formate
groups. As seen from Figure 1B, th#Mg MAS spectrum of2
clearly exhibits a complex line shape (vide infra). The crystal
structure of3 reveals that the Mg ion is coordinated with the

From the slice spectra, it is straightforward to extréd¥lg
quadrupole parameters for each of the two Mg sites: sije=,
1.70 MHz,n = 1.0, diso = 10 ppm; site 2y = 1.40 MHz,n =
0.80, diso = 10 ppm. In fact, analysis of the 1BPMg MAS
spectrum shown in Figure 1B was possible only after obtaining
the Mg MQMAS result.

In summary, we have presented a solid-stélitg NMR study
of magnesium complexes as models for inner-spheré*Mg
coordination. We have also demonstrated the g MOQMAS

four oxygen atoms of the water molecules and two oxygen atoms NMR experiment. The present study was carried out at 11.75 T

of the acetate ion¥. The following Mg NMR parameters are
obtained for3: y = 1.90 MHz,n = 0.82, anddis, = 27 ppm.
Unlike compounds1—3, compound4 has a Mg center
coordinated with asymmetrical ligands, i.e., five oxygen ligands
and one nitrogen ligand. The Mg coordination spheret iis
octahedral with bond length varying from 2.028 to 2.106 A for
the Mg—0 bonds and 2.189 A for the Mg\ bond!® Analysis
of the?®Mg MAS spectrum yieldy = 2.56 MHz,» = 0.15, and
diso = 6 ppm. To our knowledge, compouAdepresents the first
example of Mg NMR characterization of Mg complexes
containing asymmetrical ligands.
Since the®®Mg chemical shift range is rather small (ca. 50

where?Mg MAS NMR spectra with a reasonable signal-to-noise
ratio can be obtained in an hour or so féivig-enriched samples.
On the basis of our results, it can be concluded that-RylA
oligomer complexes should be accessible by solid-stity
NMR. As high-field NMR instruments (18.8 T or above) are
becoming available, the sensitivity of solid-stafMg NMR
experiments will be drastically improved. Finally, the present
solid-state®Mg NMR characterization of Mg sites has yielded
benchmark values for thé®Mg NQCCs in the Mg(HO)L2
coordination environment, which will be useful for the interpreta-
tion of solution?®Mg NMR relaxation data. We hope that the
preliminary results presented in this work will encourage further

ppm), spectral overlap is expected to be a common occurrenceSlid-state®Mg NMR studies.

in solid-state®®Mg NMR spectra if multiple Mg sites are present.
As mentioned earlier, compouri2l has two distinct Mg sites,
which results in a comple¥Mg MAS spectrum. Therefore, it is
extremely appealing to test the recently developed multiple
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